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Abstract. Southern Pakistan (Sindh) is one of the hottest regions in the world and is highly vulnerable to 10	
temperature extremes. In order to improve rural and urban planning, information about the recurrence of 11	
temperature extremes is required. In this work, return levels of the daily maximum temperature Tmax are 12	
estimated, as well as the daily maximum wet-bulb temperature TWmax extremes. The method used is the Peak 13	
Over Threshold (POT) and it represents a novelty among the approaches previously used for similar studies in 14	
this region. Two main datasets are analyzed: temperatures observed in nine meteorological stations in southern 15	
Pakistan from 1980 to 2013, and the ERA Interim data for the nearest corresponding locations. The analysis 16	
provides the 2, 5, 10, 25, 50 and 100-year Return Levels (RLs) of temperature extremes. The 90% quantile is 17	
found to be a suitable threshold for all stations. We find that the RLs of the observed Tmax are above 50°C in 18	
northern stations, and above 45°C in the southern stations. The RLs of the observed TWmax exceed 35°C in the 19	
region, which is considered as a limit of survivability. The RLs estimated from the ERA Interim data are lower 20	
by 3°C to 5°C than the RLs assessed for the nine meteorological stations. A simple bias correction applied to 21	
ERA Interim data improves the RLs remarkably, yet discrepancies are still present. The results have potential 22	
implications for the risk assessment of extreme temperatures in Sindh.	23	
 24	
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 26	
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1 Introduction 28	
 29	
Extreme maximum temperature events have received much attention in recent years, because of the associated 30	
risk of mortality and their likely increase in intensity and frequency in climate change scenarios (Sheridan and 31	
Allen, 2015). An example of the potential impact of raising maximum temperatures is the recent heat wave in 32	
Southern Pakistan (Sindh), which occurred between June 17th and June 24th 2015 and broke all the records with a 33	
death toll of 1400 people, and over 14000 people hospitalized. The temperatures in different cities of the Sindh 34	
region were in the range of 45°C - 49°C during the event (Imtiaz and Rehman, 2015). Karachi had the highest 35	
number of fatalities (1200 people approximately). The Pakistan Meteorological department issued a technical 36	
report stating a very high heat index (measuring the heat stress on humans due to high temperature and relative 37	
humidity) during this heat wave (Chaudhry et al., 2015).  38	
 39	
In summer, Sindh becomes very hot and with the arrival of a monsoon the humidity increase in the region 40	
(Chaudhry and Rasul, 2004). This lethal combination of high temperature and relative humidity is known as wet-41	
bulb temperature, which increases the death rates, and severely impacts the human habitability (Pal and Eltahir 42	
2015). The human body generally maintains the temperature around 37°C. However, the human skin regulates at 43	
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or below 35°C to release heat (Sherwood and Huber, 2010). Under high levels of the moisture content in the 1	
atmosphere, the human body cannot maintain the skin temperature below 35°C and can develop ailments like 2	
hyperthermia, heat strokes and cardiovascular problems. Hyperthermia can occur even in the fittest human 3	
beings, if they are exposed to an environment where wet-bulb temperature is greater than 35°C for at least six 4	
hours. Hyperthermia is a condition where extremely high body temperature is reached, resulting from the 5	
inability of the body to get rid of the excess heat. It occurs mostly when temperature and relative humidity levels 6	
are extremely high at the same time.  7	
 8	
This study devotes special attention to Sindh because of its exposure to the frequent and intense temperature 9	
extremes in the past (Zahid and Rasul, 2012). This region is considered as one of the most vulnerable regions in 10	
Pakistan. Sindh stretches from 23.5° N – 28.5° N and 66.5°E - 71.1°E, and is bounded on the west by the Kirthar 11	
Mountains, to the north by the Punjab plains, to the east by the Thar desert and to the south by the Arabian Sea 12	
(Indian Ocean) and in the center fertile land around Indus river. The Indus river is the source of water for the 13	
agriculture lands. Cotton, wheat and sugar cane are grown on the left bank of the Indus and rice, wheat and gram 14	
on the right bank (Chaudhry and Rasul, 2004). Cotton is the cash crop of the country. 15	
 16	
The climate in Sindh is arid and subtropical with less than 250 mm annual rainfall. The temperature frequently 17	
exceeds 45°C in summer (May-September) and the minimum average temperature recorded during winter 18	
(December- January) is 2°C. Table 2 shows the mean monthly climatic characteristics of the region from 1980-19	
2010. Figure 1 shows the spatial distribution of all nine weather stations of Pakistan meteorological department, 20	
and the ERA Interim grid points close to the corresponding locations. High population density, limited resources, 21	
poor infrastructure and high dependence of the local agriculture on climatic factors, mark this region as highly 22	
vulnerable to the impacts of climate change. 23	
 24	
The Intergovernmental Panel on Climate Change (IPCC) scenarios estimates for this region an increase in the 25	
surface temperature of the order of 4°C in this region by the end of 2100. This may significantly reduce crop 26	
yields, and cause huge economic losses to the country (Islam et al., 2009; Rasul et al., 2012; IPCC, 2012; 27	
Pachauri et al., 2014). Furthermore, it might increase the risks of heat strokes, cardiac arrest, high fever, diarrhea, 28	
cholera and vector borne diseases. Heat waves became more frequent and intense during 90’s in Southern 29	
Pakistan. Zahid and Rasul (2010) reports the significant rise in heat index and heat waves events longer than ten 30	
days in Sindh. The enhanced mortality rate related to the heat waves is a serious problem, and two obvious 31	
examples are the 1991 and the previously mentioned 2015 heat waves (Imtiaz and Rehman, 2015).  32	
 33	
The analysis of extreme climatic events is a very active area of research in geosciences (Christidis et al., 2005, 34	
2010; Tebaldi et al., 2006; Zwiers et al., 2011; Morak et al., 2011, 2013). In order to facilitate and standardize the 35	
analysis of extremes, the World Meteorological Organization (WMO) has suggested 27 specific climate indices, 36	
like the number of hot days, cold days, wet days, dry days, etc. (Tank et al., 2006; 2009, Frisch et al., 2002; Choi 37	
et al., 2009; Lustenberger et al., 2014). The investigation and analysis of such climate indices has now reached a 38	
high level of popularity. 39	
 40	
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Extreme value theory (EVT) represents an increasingly widespread approach in climate studies  (Coles, 2001, 1	
Zhang et al., 2004; Brown et al., 2008; Faranda et al., 2011; Acero et al., 2014) to estimate the occurrence of the 2	
extreme events. The peak over threshold (POT) approach determines the distribution of the exceedances above a 3	
threshold. The exceedances are asymptotically distributed according to the Generalized Pareto Distribution 4	
(GPD). GPD has remarkable properties of universality when the asymptotic behavior is considered (Lucarini et 5	
al., 2016), while one can expect that the threshold level above which the asymptotic behavior is achieved depends 6	
on the specifics of the analyzed time series. In particular, when looking at spatial fields, it will depend on the 7	
geographical location.  8	
 9	
In this study, we have chosen to use the POT method to assess the temperature extremes in the Sindh region, 10	
because it is the most practical approach in modeling the risks of extremes. It is applied for studying temperature 11	
extremes in different regions of the world (Burgueño et al., 2002; Nogaj et al., 2006; Coelho et al., 2008;  Ghill et 12	
al., 2011). However, to our knowledge, the POT method has never been used to analyze the risk of temperature 13	
extremes in Sindh. The POT approach allows in principle for estimating the return periods and the return levels 14	
(RLs) also for time ranges longer than what has been currently observed. This information and this predictive 15	
power can be beneficial for policy makers and other stakeholders. Note that this is exactly the kind of information 16	
planners need when, e.g., designing infrastructures that are deemed to last a very long time. 17	
 18	
It is useful to consider two indicators of extreme temperatures: (1) temperature extremes Tmax, and (2) Wet-bulb 19	
temperature extremes TWmax, and are interlinked, but rarely studied together. The southern Pakistan  (Sindh) 20	
lacks the information about both the temperature extremes and faces the consequences of heat waves almost 21	
every year. Thus, considering the need and relevance of the information such a study is necessary and timely.    22	
 23	
Therefore, we estimate the return levels of extreme daily maximum temperatures Tmax and daily maximum wet-24	
bulb temperatures TWmax over the different return periods in Sindh. We apply the peak over threshold (POT) 25	
method on the observational data of the nine weather stations provided by Pakistan meteorological department, 26	
and the ERA Interim data of European center for medium range weather forecast (ECMWF) model for the 27	
corresponding grid points from 1980 to 2013. If the ERA Interim dataset characterizes well the extremes, it could 28	
be an option for the regions inside Sindh where no observational data is available. Furthermore, a standard bias 29	
correction is applied on the ERA Interim data to improve the results.  30	
 31	
The paper is organized as follows. In Section 2, the statistical modeling of extremes using peak over threshold 32	
method is briefly illustrated along with a description of the data used. The estimation of daily maximum wet-bulb 33	
temperature is discussed in detail in this Section. Section 3 presents the main results of the POT analysis on the 34	
meteorological station observations, ERA Interim, and bias corrected ERA Interim daily maximum temperature 35	
Tmax and wet-bulb temperature TWmax data at nine locations, viz. Jacobabad, Mohenjo-daro, Rohri, Padidan, 36	
Nawabshah, Hyderabad, Chhor, Karachi, and Badin. The performance of the ERA Interim and bias corrected 37	
ERA Interim in comparison to observations is also described in Section 3. All computations and graphics in this 38	
work are done using the R free open source statistical software, using the packages ismev and extRemes (see 39	
www.R-project.org and R Development core team 2015). Section 4 summarizes the major findings of the study 40	
and concludes our work. 41	
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2. Data and Methodology 1	

2.1 Meteorological Station Data 2	
 3	
The daily maximum temperature and relative humidity data recorded at nine meteorological stations in Sindh 4	
from 1980 to 2013 are provided by the Pakistan Meteorological Department (see Table 1).  We select nine 5	
stations, which contain a negligible amount of missing values after 1980, and are suitable for the POT analysis. 6	
An additional criterion is that only those stations are chosen where no changes occurred in measuring instruments 7	
during the last 33 years (Brunetti et al., 2006). None of the station data shows gaps with a duration longer than 8	
two days, which are treated by replacing the missing values with the average of the two previous values. 9	
 10	
The temperature data are discretized unevenly with intervals up to 1 degree Celsius. Deidda and Puliga (2006) 11	
uses a Monte Carlo study for simulating various resolutions to show that the discretization in precipitation data 12	
affects the convergence of parameter estimation in the extreme value analysis. For this reason, we produce high 13	
resolution data to compensate the effect of discretization and thus to improve the convergence of the estimator. 14	
To convert station data to higher resolution, we add them to a uniform noise with the magnitude corresponding to 15	
the discretization steps (1 degree C). The noise r is a uniform random variable in the interval [-0.5, 0.5]. The 16	
main property of this noise is to round (T+r) = T, where T is the temperature with 1-degree resolution and 17	
‘round’ is the numerical function, which maps the interval [T-0.5, T+0.5] to T. Thus, adding the noise does not 18	
perturb the information content of the observations. This procedure is applied to all temperature data, irrespective 19	
of the actual resolution, and replicated 100 times using a Monte Carlo approach. Results are then averaged. We 20	
check the influence of this noise parameterization and find no significant bias in the return level estimates.  21	
 22	

2.2 ERA Interim Reanalysis Data 23	
 24	
The gridded daily maximum temperature and relative humidity data of ERA Interim reanalysis is downloaded 25	
from the website  ECMWF Public Datasets web interface (http://apps.ecmwf.int/datasets/). The ERA Interim is 26	
produced from the European center for medium range weather forecast (ECMWF) model with resolution 0.75° × 27	
0.75° (Dee et al., 2011). The gridded data is then extracted at the closest grid point of all stations, for the period 28	
1980-2013. The latitude and longitude of the ERA Interim stations are displayed in Table 1.  29	
 30	
One of the main requirements to perform the POT analysis is a stationary time series.  Therefore, similar to 31	
Bramati et al. (2014), the ADF test of stationarity (Dickey and Fuller, 1979) is performed on all the time series. 32	
The test results show no sign of long-term correlations in the data. High short-term correlations (daily time scale) 33	
typically lead to clusters of extreme values and require the use of a declustering method (see more detail in 34	
Section 2.4).  35	

2.3 Wet-bulb Temperature Calculations 36	
 37	
The wet-bulb temperature measures the heat stress better than other existing heat indices, because it establishes 38	
the clear thermodynamic limit on heat transfer that cannot be overcome by adaptations like clothing, activity and 39	
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acclimatization (Pal and Eltahir 2015, Sherwood and Huber, 2010). Here, we use an empirical equation 1	
developed by Stull (2011) to measure the wet-bulb temperature [°C ]. 2	
 3	

 TW!"#  = T!"#   atan (𝛼! RH!"# + 𝛼!) + atan T!"# + RH!"# − atan RH!"# +  𝛼! +4	
+ 𝛼!(RH!"#) 

!
! atan(𝛼!RH!"#) − 𝛼!                          (1) 5	

  6	
 7	
where TWmax is the maximum wet-bulb temperature [°C], Tmax is the maximum temperature [°C], and RHmax   is 8	
the maximum relative humidity [%]. This relationship is based on an empirical fit, as in Stull (2011), where the 9	
coefficient values are α1 = 0.151977, α2 = 8.313659, α3 = -1.676331, α4 = 0.00391838, α5 = 0.023101, and           10	
α6 = 4.686035. The Eq. (1) covers a wide range of relative humidity and air temperatures with an accuracy of 11	
0.3°C. 12	

2.4 Peak Over Threshold 13	
 14	
In order to determine return levels (RLs) of extreme maximum temperatures and maximum wet-bulb 15	
temperatures in Sindh, the Peak Over Threshold approach (POT) is applied to the meteorological stations, the 16	
ERA Interim, and the bias corrected ERA Interim data. In this analysis, extremes are defined as exceedances over 17	
threshold distributed according to the Generalized Pareto Distribution (GPD), which is characterized by two 18	
parameters, the shape ξ and the scale σ. The GPD for exceedances 𝑥 − 𝑢 of a random variable 𝑥 reads as 19	
 20	

           𝐺 𝑥 = 1 − 1 + 𝜉
𝑥 − 𝑢
𝜎

!!!             𝑥 > 𝑢, 𝜉 ≠ 0  ,             (2) 
 21	
where 𝑢 is the threshold. The choice of the threshold 𝑢 is done in order to ensure that the model in (2) provides a 22	
reasonable fit to exceedances of this threshold. The result for the two parameters shape ξ and scale σ depend on 23	
the threshold u (Coles, 2001). The shape parameter ξ determines the tail behavior while the scale parameter σ 24	
measures the variability. For a negative shape parameter, ξ < 0, the distribution is bounded (beta distribution), for 25	
vanishing shape parameter, ξ = 0, the distribution is exponential, and for a positive shape parameter, ξ > 0, the 26	
distribution has no upper bound (Pareto distribution). 27	
 28	
In particular, for a negative shape parameters ξ <0 the GPD has an upper bound 29	
 30	

                    𝐴!"# = 𝑢 − 𝜎 𝜉                                                                   (3) 
 31	

                                   𝐺 𝑥 = 0                                𝑥 > 𝐴!"# , 𝜉 < 0                
 32	
where 𝐴!"#  is an absolute maximum (Lucarini et al., 2014). The choice of the optimal threshold for performing 33	
statistical inference from a time series is crucial. A too large value for 𝑢 would reduce the number of exceedances 34	
to a few values, inflating the variance of the estimators and by consequence the analysis would unlikely yield any 35	
useful results. On the other hand, a too small value for 𝑢  would violate the asymptotic nature of the model, with 36	
a possible biased estimation and wrong model selection (Coles, 2001). 37	
 38	
The threshold selection is the first step in the application of POT approach, and the stability of the shape 39	
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parameters ξ and the scale parameters σ fitting the GPD is assessed with various thresholds. The threshold chosen 1	
for each station is the lowest value which  stabilizes the estimates shape parameters ξ and the modified scale 2	
parameters σ* (see details later in Section 3.1). The shape ξ, the scale σ and the return levels are estimated using 3	
the Maximum Likelihood Estimator (MLE) using the R software (R Development core team 2015), which also 4	
provides an standard errors of estimates. 5	
 6	
 Multi-occurrence is an important characteristic of extreme climatic events and is referred to as clustering. These 7	
clusters are consecutive occurrences of above threshold events. It is important to treat the clustered extremes to 8	
achieve the independence assumption, which is crucial for the POT model, in order to apply MLE. We treated the 9	
clusters using the concept of Extremal Index (EI) (see Newell, 1964, Loynes, 1965, O'Brien, 1974, Leadbetter, 10	
1983, Smith, 1989, Davison and Smith, 1990). The Extremal Index θ measures the degree of clustering of 11	
extremes. It ranges between 0 and 1, (θ = 0 means strong clustering,   θ = 1 absence of clusters). Leadbetter 12	
(1983) interprets 1/θ as the mean number of exceedances in a cluster. 13	
 14	
The extremal index θ can be estimated in two separate ways. Here, we apply the ‘intervals estimator’ automatic 15	
declustering by Ferro and Segers (2003). A distinctive property of this method is that it avoids the subjective 16	
choice of cluster parameters. The main ingredient is an asymptotic result for times between threshold 17	
exceedances. The exceedance times are split into two types, a set of vanishing intra-exceedance times within the 18	
clusters, and an exponentially distributed set of inter-exceedance times between clusters. The method is iterative 19	
starting with largest return times and stops when a limit for the inter-exceedance times is reached. The standard 20	
errors of the estimated parameters is obtained by a bootstrap procedure. In this study, the extremal index value is 21	
≤ 0.5 in all the time series referring to the clusters. 22	
 23	
The primary focus of the study is to estimate N - years return levels (RLs) x!, which is exceeded on the time 24	
scale of N years (Coles, 2001) and reads 25	
                                                                                                                   26	
                                                𝑥! = 𝑢 + !

!
(𝑁𝑛!𝜁!)! − 1  ,                                                                             (4) 27	

 28	
where N represents the return period, ny is the number of observations per year , ζ!  is the probability of an 29	
individual observation exceeding the threshold 𝑢, the shape parameter is  ξ and the scale parameter is σ. 30	

	31	

2.5. Bias Correction Method  32	
 33	
A simple bias correction is applied to each ERA Interim time series through a rescaling that adjust the first two 34	
moments (mean and variance) to the sample moments calculated on the corresponding observations. Therefore, 35	
the bias correction is applied to the entire time series and it is not tailored to the extreme events only. The bias 36	
corrected ERA Interim time series 𝑥 is expressed as    37	
 38	
 39	
 40	
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𝑥 =  𝑧 +   
𝑦!"# − 𝑦

σ!
 . σ! 

   (5) 1	
 2	

where  𝑦!"# is the ERA Interim time series,  𝑦  and  σ! its mean and standard deviation, whereas 𝑧  and σ! are 3	
the mean and standard deviation of the meteorological station temperatures. The bias corrected ERA Interim time 4	
series shows better results compared to the original ERA Interim data. The comparison of extremes as detected in 5	
the station observations, in the ERA Interim, and in the bias corrected ERA Interim time series is carried out in 6	
Section 3. 7	

3. Results and Discussion  8	

3.1 Threshold Selection  9	
 10	
The threshold selection is the first step in a POT analysis. It is essential to choose a threshold that is high enough 11	
to be in the asymptotic limit of the distribution of exceedances, but low enough to have ample data for the fit. The 12	
threshold selection is performed using diagnostic plots of the modified scale parameter σ* (σ* = σu – ξu) and the 13	
shape parameter ξ of the observed, ERA Interim, the bias corrected ERA Interim Tmax, and TWmax in all stations. 14	
In GPD, the excesses above a high threshold have same shape but shifted scale. In order to deal with this problem 15	
the modified scale σ* is used, because its estimate remains constant above a sufficiently high threshold 16	
guaranteeing that the asymptotic properties are obeyed (Sacrrott and MacDonald, 2012).We observe both the 17	
modified scale parameter and the shape parameter ξ stability plots carefully. The threshold u is selected as the 18	
lowest value where the two parameters are invariant in order to reach the asymptotic limit (Coles, 2001 and 19	
Furrer et al., 2010). Figure 2 shows the parameter stability plots of the station observed Tmax for Karachi only, as 20	
an example to explain the threshold selection procedure. We observe that the 90% quantile is an appropriate 21	
threshold for all the station observed, the ERA Interim, the bias corrected ERA Interim Tmax, and TWmax.  22	
 23	
In addition to diagnostic plots of the modified scale parameter σ* and the shape parameter ξ, the mean residual 24	
life plot is used to select the appropriate threshold for the POT analysis. The mean residual life plot is initiated by 25	
Davison and Smith, (1990), according to them lowest value of the threshold should be selected when the 26	
threshold based mean excesses are consistent. Hence, the threshold is selected when the plot is approximately 27	
linear, like in case of Karachi the station observed Tmax plot appears to be linear and stable at u = 36, indicating u 28	
= 36 as the most suitable threshold for Karachi (Figure 3).  29	

3.2 GPD Fit 30	
 31	
The goodness of fit is evaluated by means of Quantile-Quantile (Q-Q) plots and hypothesis testing. The Q-Q plot 32	
analysis is performed for the stations observed, the ERA Interim, the bias corrected ERA Interim daily Tmax and 33	
TWmax. The Q-Q plots of the observed Tmax show that the GPD fits well in most of the stations. However, in a 34	
few stations the empirical values show slight deviation from the modeled values like Jacobabad, Mohenjo-daro, 35	
Padidan and Chhor. In spite of minor deviations at some stations, still most of the exceedances have a good fit 36	
with the model.  The Q-Q plots of the observed TWmax also show good GPD fits in all stations.  37	
 38	
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The Q-Q plots of the ERA Interim Tmax indicates that the GPD fits are not good. The empirical values of the 1	
higher quantiles are deviating from the theoretical quantiles in all stations. However, if the higher quantiles are 2	
neglected, then the stations like Jacobabad, Mohenjo-daro, Rohri, Padidan, Nawabshah, Chhor, and Badin shows 3	
that the exceedances fit very well. Likewise, the Q-Q plots of the ERA Interim TWmax do not show good fits with 4	
the GPD model. The Q-Q plots of the bias corrected ERA Interim Tmax, and TWmax show better results than the 5	
ERA Interim. We notice that the Tmax of the ERA Interim and bias corrected ERA Interim fit better than the 6	
TWmax if the higher quantiles are ignored.  7	
 8	
In order to assess the goodness-of-fit, we apply the Kolmogorov-Smirnov (K-S) test and Anderson-Darling (A-D) 9	
test to the data of meteorological stations, ERA Interim, bias corrected ERA Interim Tmax and TWmax. The p-10	
values indicate a good performance of the fit procedure. Table 3 displays the results of the K-S and A-D statistics 11	
of the Tmax and TWmax in all the data sets. 12	

3.3 Parameter Estimates  13	
 14	
Here, we analyze the shape parameter ξ , the scale parameter σ, and  threshold u for all considered datasets. The 15	
standard errors of the shape ξ and the scale σ parameters are estimated using the Maximum Likelihood 16	
Estimation (MLE), and given in Table 4. The spatial distribution of the shape parameter ξ and the scale parameter 17	
σ of the GPD in Sindh are shown in Figure 4. The shape parameters ξ are all negative in all datasets at all 18	
stations. This is hardly surprising, as meteorological and physical processes make sure that the temperature 19	
cannot grow locally without control. Figure 4 displays the bias corrected ERA Interim results only. The observed 20	
Tmax shape parameters ξ are between -0.418 to -0.223, and for TWmax within -0.323 to -0.177. The bias corrected 21	
ERA Interim Tmax shape parameters ξ range from -0.305 to -0.002, and TWmax are between -0.18 to -0.01.  22	
 23	
The scale parameters σ of the observed Tmax are from 2.08 to 2.76, and the TWmax are in a range 1.86 to 2.76. In 24	
the ERA Interim analysis, the scale parameter σ of Tmax is within 1.00 - 1.95, and for TWmax within 0.74 -1.75. 25	
We observe a difference in the scale parameters of both the observed, the ERA Interim Tmax  and TWmax. We find 26	
that the scale parameters of the bias corrected ERA Interim data are much closer to those estimated for Tmax and 27	
TWmax using the station data. In the bias corrected ERA Interim Tmax the scale parameters σ are between 1.50 - 28	
2.75, while for TWmax are within a range 1.40 – 2.40 (Figure 4).  29	

3.4 Absolute Maxima 30	
 31	
Once the shape ξ , the scale σ, and the thresholds u are fixed, it is possible to compute the theoretical absolute 32	
maxima using Eq. (3) (Section 2.4). Theoretical absolute maxima can be compared with the observed ones for 33	
each station to better understand the signals of warming in Sindh. The daily maximum temperature Tmax and the 34	
maximum wet-bulb temperature TWmax (station data, the ERA Interim, and the bias corrected ERA Interim) have 35	
negative shape parameter ξ in all stations. This means that according to Eq. (2) in section 2.4, the probability 36	
distribution function (pdf) is bounded by the maximum values. These maximum values are the theoretical upper 37	
limits predicted by the GPD fit. The analysis shows that the observed absolute maxima Tmax and TWmax in all 38	
stations of the three data sets are below the theoretical absolute maximum, as expected (Figure 5). This gives us 39	
confidence on the quality of our fit. The following piece of information can also be derived. Assume that one 40	
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observes in the future an extreme event larger than the maximum inferred in the present dataset; this may suggest 1	
some non-stationarity in the most recent portion of the dataset. 2	

3.5 Return Levels 3	
 4	
The return levels (RLs) are computed considering various return periods (2, 5, 10, 20, 50, 100-year). The return 5	
level plots of the stations observed, the ERA Interim, the bias corrected ERA Interim daily maximum 6	
temperature Tmax and daily maximum wet–bulb temperature TWmax are displayed in Figures 6 and 7. The return 7	
levels follow the north-south gradient of the climatic mean temperatures. The northern parts of the Sindh are 8	
hotter than the southern parts. Therefore, different stations have different potential for maximum temperature 9	
return levels. The stations located in the North are Jacobabad, Mohenjo-daro, Rohri, Padidan, and Nawabshah. 10	
While Hyderabad, Chhor, Karachi, and Badin are sited in the South.  11	
 12	
The 2, 5, 10, 20, 50, 100-year RLs estimated in Sindh for station observed Tmax at time reach over 50°C in 13	
Jacobabad, Mohenjo-daro, Padidan, Nawabshah, and over 45°C in Rohri, Hyderabad, Chhor, Karachi, Badin. 14	
The ERA Interim Tmax return levels are at least 3°C to 5°C lower in all stations. However, the ERA Interim Tmax 15	
captures the geographical variability of the field, but cannot estimate the correct magnitude of the events.  For 16	
example, in Badin the return level of the station Tmax is 42°C in a 3-year return period, while the ERA Interim 17	
show the same value of the return level in a 30-year return period (Figure 6).  18	
 19	
The RLs of TWmax are over the 35°C in all meteorological stations. As for the ERA Interim RLs of TWmax are 20	
greater than 30°C for all the stations except Karachi, which has RLs less than 30°C. Here, we see again that the 21	
RLs of the ERA Interim TWmax are smaller than the RLs of station TWmax. For example, in Badin station, the RLs 22	
of the station TWmax is 38°C in a 4-years return period whereas, the ERA Interim reaches the same RLs in a 15-23	
year return period (Figure 7). 24	
 25	
It is important to underline that the bias between the station and the ERA Interim data is rather relevant when one 26	
wishes to address the impact of hot climatic extremes to the active crop production in the region. The crops are 27	
very sensitive to temperature variations, and even a rise of one degree Celsius can cause detrimental changes in 28	
the phenological stages of the crops (Hatfield and Preuger, 2015). Every crop has a certain limit to tolerate the 29	
temperature. When temperature exceeds this limit, the crop yield is drastically reduced. In summer, the 30	
temperature and humidity increase to an extent that there are high chances of a rapid pests spread in the crops. 31	
Sindh produces cotton, wheat, rice, mango, banana, and dates, so a correct estimate of temperature extremes is 32	
very important in order to avoid the crops failure and the reproduction of pests. Therefore, we apply the standard 33	
bias correction on the ERA Interim data to check the alterations in the return levels and return periods of Tmax and 34	
TWmax. 35	
 36	
The bias corrected ERA Interim Tmax and TWmax, show improvements in the return levels (RLs), along with a 37	
good correspondence in each station. In a maximum temperature Tmax analysis the RLs of the bias corrected ERA 38	
Interim overlap the RLs of the station observations in a range 5-100 years, but do not overlap within a range 2-39	
5years, in the Nawabshah, Hyderabad, Karachi, and Badin. However, the rest of the stations show no overlaps of 40	
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the return levels in both the bias corrected ERA Interim and station observations. In a wet-bulb temperature 1	
TWmax analysis, the RLs of the bias corrected ERA Interim overlap the RLs of the station observations in 2	
Mohenjo-daro, Hyderabad, Chhor, and Badin at some intervals. While, no overlapping of the RLs is detected in 3	
rest of the stations, while they differ at some intervals (Figures 6 and 7).  4	
 5	
The 2, 5, 10, 20, 50, 100-year RLs of Tmax for the bias corrected ERA Interim data are greater than 50°C in 6	
Jacobabad, Mohenjo-daro, Padidan, Nawabshah, and greater than 45°C in Rohri, Hyderabad, Chhor, Karachi, 7	
Badin. As for the TWmax, the 2, 5, 10, 20, 50, 100-year RLs of the bias corrected ERA Interim exceed 35°C in all 8	
stations. Figures 6 and 7 show that the ERA Interim time series improves a lot after the bias correction, but the 9	
two data sets still have some quantitative differences. 10	
 11	
The extremes of daily maximum wet-bulb temperature TWmax are estimated as above the human survivability 12	
threshold 35°C throughout the region, so the risk of hyperthermia is very high here. The human habitability in 13	
such a warm region is already at risk. The most vulnerable people are those who are involve in the everyday 14	
outdoor activities like farming, fishing, building construction, athletes, elderly and infants can have heat strokes, 15	
dehydration etc. Therefore, an early warning system is necessary in Sindh, to avoid the crop failure, water 16	
shortages and casualties due to the heat stress each year. 17	
 18	
We also plot the station and bias corrected ERA Interim Tmax, and TWmax return levels spatially for the 5, 10, 25 19	
and 50-year return periods  (Figures 8 and 9), as a detailed spatial overview of the temperature extremes in Sindh 20	
might be of interest to the policy makers. 21	

4. Summary and Conclusion 22	
 23	
The main objective of this study is the assessment of the return levels of the extreme daily maximum 24	
temperatures Tmax and wet-bulb temperatures TWmax in Southern Pakistan (Sindh). In addition, the performance 25	
of the ERA Interim TWmax is compared to the weather station TWmax to assess the ability to estimating 26	
temperature extremes in Sindh. Moreover, a standard bias correction is applied to the ERA Interim data to 27	
improve its performance in representing temperature extremes.  28	
 29	
In summary, the Peak Over Threshold (POT) method is applied to the daily Tmax and TWmax data of nine 30	
observatories and to the corresponding nearest ERA Interim temperature data. Standard declustering technique is 31	
applied to all time series to achieve the independence assumption of extremes. The 90% quantile is the 32	
appropriate threshold choice for the weather stations, the ERA Interim and the bias corrected ERA Interim 33	
maximum temperature and wet-bulb temperature. A Generalized Pareto Distribution (GPD) is fit to both Tmax and 34	
TWmax  for all three datasets. The results show that the shape parameter ξ is negative for all stations. The scale 35	
parameter σ estimated on weather station temperatures is much closer to the bias corrected ERA Interim 36	
estimates than the original ERA Interim data ones. The theoretical absolute maxima of the time series are higher 37	
than the observed absolute maxima in all stations. The Q-Q plots are used to assess the GPD fit, which results to 38	
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be acceptable for both Tmax and TWmax station data as compared to the ERA Interim data. However, the bias 1	
corrected ERA Interim shows improved GPD fits than ERA Interim. 2	
 3	
Return levels (RLs) of Tmax and TWmax are estimated for the 2, 5, 10, 25, 50, 100-year return periods in all 4	
datasets. The RLs of Tmax estimated using the meteorological station temperatures are greater than 50°C in 5	
Jacobabad, Mohenjo-daro, Padidan, Nawabshah, and greater than 45°C in Rohri, Hyderabad, Chhor, Karachi and 6	
Badin. While the RLs of TWmax in station data are larger than 35°C in the entire Sindh, when using ERA Interim 7	
temperatures, they are estimated as greater than 45°C in Northern Sindh and greater than 40°C in southern Sindh. 8	
The differences in the RLs using the two datasets are between 3°C and 5°C for both shorter and longer return 9	
periods due to the minor variations in the shape and scale parameters. Although the ERA-Interim dataset does not 10	
capture well the magnitude of the extremes, but it provides a good representation of their spatial fields. 11	
 12	
A simple standard bias correction is applied to the ERA Interim to assess whether the return levels of extremes 13	
are better predicted after the rescaling is applied. The bias corrected ERA Interim Tmax and TWmax gives return 14	
levels closer to the meteorological stations observed ones than the original ERA Interim return levels at all 15	
stations. Although the bias corrected ERA Interim shows a good correspondence with the meteorological station 16	
data, some differences remain.  17	
 18	
This paper contains novel and beneficial information regarding the assessment of the temperature extremes (Tmax 19	
and TWmax) in Sindh, which would help the local administrations to prioritize the regions in terms of adaptations. 20	
This research fills the gaps in the literature providing information on Tmax and TWmax extremes in Sindh, which 21	
would benefit both public and private stakeholders.  22	
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                   Table 1. Code, Name, Geographic coordinates and Altitude of the stations. 1	

 2	
 3	

	4	
 5	
 6	

Table 2. Monthly mean climatic characteristics of all nine stations from1980-2010. 7	

 8	

 9	

   
 

Code 

 
 

Name 

 
 
 
 

PMD weather stations 

 

 
ERA-Interim stations 

              
Latitude               Longitude 

 
Altitude  

(m) 

 
 
 

               
Latitude                

 
Longitude 

 
JCB 

 
Jacobabad 

 
28o 18'N 

 
68o 28'E 

 
55 

 
28 o4'N 

 
68 o15'E 

MJD Mohenjo-daro 27o 22'N 68o 06'E 52.1 27o5'N 67 o75'E 
RHI Rohri 27o 40'N 68o 54'E 66 27o75'N 69 o25'E 
PDN Padidan 26o 51'N 68o 08'E 46 26o8'N 68 o5'E 
NWB Nawabshah 26o 15'N 68o 22'E 37 26o25'N 68 o0'E  
HYD Hyderabad 25o 23'N 68o 25'E 40 25o5'N 68 o15'E 
CHR Chhor 29o 31'N 69o 47' E 5 25o3'N 69 o6'E 
KHI Karachi 24o 54'N 67°08' E 21 25o2'N 67 o5'E 

 

BDN Badin 24o 38'N 68o 54'E 10 24 o75'N 68 o65'E 
 

Stations Mean Temperature (°C)  
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Jacobabad 15.2 18.2 24 30.5 35.6 37 34.8 33 31.4 27.8 22.3 16.7 27 
Mohenjo-daro 13.9 16.7 23 29.1 34.1 35 33.9 32.9 30.9 26.7 21.1 15.9 25.9 
Rohri 15.6 18.2 23.6 29.8 34.5 35.6 33.9 32.3 31.2 27.6 22.1 16.9 26.4 
Padidan 14.8 17.7 23.5 29.9 34.4 35.5 33.7 32.1 31 27.5 22.4 16.4 26.5 
Nawabshah 15.4 18 24 29.8 34.5 35.6 34 32.3 31.5 28 22.4 16.9 26.7 
Hyderabad 18 21 26.2 30.9 33.3 34 32.4 31.1 31 29.6 24.8 19.6 27.6 
Chhor 16.5 19.5 25 30.1 33.5 33.7 31.6 30.1 30.1 28.2 22.6 17.9 26.3 
Karachi 18.6 21.2 25.4 28.9 31.1 31.9 30.5 29.2 29.5 28.9 24.6 20.4 26.4 
Badin 17.5 20.5 25.8 30.1 32.6 32.8 31 29.6 29.6 28.7 24 19 26.6 
              Stations Minimum Temperature (°C)  

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 
Jacobabad 7.9 10.9 16.6 22.4 27.4 29.8 29.3 28.4 26.3 20.5 14.3 8.9 19.9 
Mohenjo-daro 4.7 7.9 13.3 18.9 24 27.4 27.9 27 24.7 18.2 11.8 7.3 17.3 
Rohri 8.3 10.8 15.9 21.7 26.1 27.7 27.1 26 24.4 19.9 14.2 9.6 18.7 
Padidan 6.5 8.9 14.5 20.2 24.7 27 26.9 25.8 23.7 18.3 12.4 7.6 17.8 
Nawabshah 6.3 8.7 14.2 19.4 24.6 27.3 27.2 25.9 23.8 18.4 12.4 7.8 17.9 
Hyderabad 11.4 13.9 18.8 22.8 26.1 27.9 27.6 26.5 25.4 22.5 17.4 13 21.1 
Chhor 5.9 8.9 14.8 20.3 24.8 26.9 26.5 25.3 23.9 18.7 11.8 7 17.6 
Karachi 11.5 14 18.6 23 26.6 28.3 27.6 26.3 25.6 21.9 16.8 12.7 20.7 
Badin 9.9 12.6 17.9 22.3 25.7 27.6 27.1 26 25 22.1 16.5 11.4 20.2 
              Stations Maximum Temperature (°C)  

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 
Jacobabad 22.6 25.6 31.4 38.6 43.9 44.4 40.2 37.6 36.8 35.1 30.3 24.4 34.1 
Mohenjo-daro 23.1 26.2 32.1 38.7 43.8 44.2 40.9 38.7 37.5 35.2 30.5 24.8 34.5 
Rohri 22.6 25.6 31.2 38.1 43 43.5 40.5 38.3 37.8 35.2 30 24.3 34 
Padidan 23.1 26.4 32.2 39.4 43.9 44.1 40.6 38.4 38.3 36.3 31.1 25.3 34.8 
Nawabshah 24.5 27.9 33.8 40.2 44.2 43.9 40.7 38.8 39 37.7 32.3 26.1 35.5 
Hyderabad 24.7 28.1 33.7 38.8 41.3 40 37.2 35.6 36.3 36.7 31.9 26.2 34.1 
Chhor 26.9 29.9 35.2 40 42 40.6 36.8 34.9 36.3 37.6 33.5 28.7 35 
Karachi 26.3 28.4 32.2 34.7 35.5 35.4 33.3 32.1 33.2 35.5 32.5 28.2 32 
Badin 25.2 28.3 33.7 37.8 39.4 37.9 34.9 33.2 34.2 35.2 31.4 26.5 32.9 
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 1	
Table 3.  Results of the Kolmogorov-Smirnov Goodness of fit test and Anderson-Darling test between   2	
              empirical and GPD fits. 3	

 4	
 5	
	6	
	7	
	8	
 9	
 10	
 11	
 12	
 13	

Observed Tmax 
Test 

     Statistics  
Null  

Hypothesis 
                                               P-value 
JAC MJD RHI PDN NWS HYD CHR KHI BDN 

Kolmogorov 
Smirnov  

Equality of probability 
distribution 

 
0.947 

 
0.340 

 
0.996 

 
0.139 

 
0.941 

 
0.385 

 
0.928 

 
0.306 

 
0.666 

Anderson 
Darling  

Equality of probability 
distribution 

 
0.553 

 
0.978 

 
0.654 

 
0.857 

 
0.157 

 
0.649 

 
0.233 

 
0.869 

 
0.145 

ERA Interim Tmax 

Test 
     Statistics  

Null  
Hypothesis 

 P-value    
JAC MJD RHI PDN NWS HYD CHR KHI BDN 

Kolmogorov 
Smirnov  

Equality of probability 
distribution 

 
0.169 

 
0.125 

 
0.553 

 
0.456 

 
0.322 

 
0.187 

 
0.419 

 
0.456 

 
0.332 

Anderson 
Darling  

Equality of probability 
distribution 

 
0.355 

 
0.263 

 
0.165 

 
0.587 

 
0.615 

 
0.398 

 
0.266 

 
0.687 

 
0.425 

Bias corrected ERA Interim Tmax 
Test 

     Statistics  
Null  

Hypothesis 
                                             P-value 
JAC MJD RHI PDN NWS HYD CHR KHI BDN 

Kolmogorov 
Smirnov  

Equality of probability 
distribution 

 
0.452 

 
0.4729 

 
0.197 

 
0.489 

 
0.269 

 
0.137 

 
0.158 

 
0.243 

 
0.312 

Anderson 
Darling  

Equality of probability 
distribution 

 
0.352 

 
0.315 

 
0.235 

 
0.270 

 
0.335 

 
0.289 

 
0.216 

 
0.390 

 
0227 

Observed TWmax 
Test 

     Statistics  
Null  

Hypothesis 
                P-value    

JAC MJD RHI PDN NWS HYD CHR KHI BDN 
Kolmogorov 
Smirnov  

Equality of probability 
distribution 

 
0.981 

 
0.111 

 
0.341 

 
0.226 

 
0.457 

 
0.545 

 
0.441 

 
0.385 

 
0.211 

	

Anderson 
Darling  

Equality of probability 
distribution 

 
0.623 

 
0.745 

 
0.587 

 
0.884 

 
0.199 

 
0.123 

 
0.789 

 
0.669 

 
0.473 

ERA Interim TWmax 
  Test 

     Statistics 
Null  

Hypothesis 
                                               P-value 
JAC MJD RHI PDN NWS HYD CHR KHI BDN 

Kolmogorov 
Smirnov  

Equality of probability 
distribution 

    
0.425 

 
0.258 

 
0.134 

 
0.856 

 
0.497 

 
0.222 0.712 0.564 0.955 

Anderson 
Darling  

Equality of probability 
distribution 

 
0.236 

 
0.474 

 
0.516 

 
0.219 

 
0.356 

 
0.117 

 
0.537 

 
0.464 

 
0.613 

Bias corrected ERA Interim TWmax 
  Test 

     Statistics 
          Null  
     Hypothesis 

                                             P-value 
JAC MJD RHI PDN NWS HYD CHR KHI BDN 

Kolmogorov 
Smirnov  

Equality of probability 
distribution 

 
0.268 

 
0.688 

 
0.127 

 
0.372 

 
0.268 

 
0.229 

 
0.591 

 
0.582 

 
0.478 

Anderson 
Darling  

Equality of probability 
distribution 

 
0.373 

 
0.484 

 
0.278 

 
0.432 

 
0.306 

 
0.283 

 
0.365 

 
0.445 

 
0.483 
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Table 4. Estimated parameters shape ξ, scale σ and standard error Δξ  of all the data sets. 2	
 3	

Station observed Tmax 

Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN 

Shape ξ -0.3875 -0.2550 -0.4182 -0.3261 -0.3323 -0.3292 -0.3108 -0.2225   -0.3292 

Standard Error Δξ 0.0317 0.0226 0.0226 0.0218 0.0208 0.0312 0.0371 0.0341   0.0312 

Scale σ 2.7540 2.0819 2.3510 2.2144 2.1391 2.2286 2.5629 2.5685    2.2286 

Standard Error Δσ 0.1421 0.1040 0.1075 0.1076 0.1031 0.1166 0.1462 0.1444 0.1166 

ERA Interim Tmax 
 Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN 

Shape ξ -0.1959 -0.1788 -0.2076 -0.2185 -0.2135 -0.3380 -0.2850 -0.0376 -0.2514 

Standard Error Δξ 0.0320 0.0348 0.0343 0.0287 0.0265 0.0316 0.0337 0.0508 0.0371 

Scale σ 1.4643 1.3230 1.3440 1.5045 1.5630 2.0656 1.8497 1.3303 2.0410 

Standard Error Δσ 0.0798 0.0739 0.0741 0.0788 0.0788 0.1082 0.0949 0.0908 0.1153 

Bias Corrected ERA Interim Tmax 
Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN 

Shape ξ -0.1959 -0.1788 -0.2076 -0.2185 -0.2135 -0.3380 -0.2850 -0.0376 -0.2514 

Standard Error Δξ 0.0320 0.0348 0.0343 0.0287 0.0265 0.0316 0.0337 0.0508 0.0371 

Scale σ 1.9834 1.7918 1.8205 2.0382 2.1164 2.7980 2.3081 1.8016 2.7636 

Standard Error Δσ 0.1081 0.1001 0.1004 0.1068 0.1068 0.1467 0.1233 0.1229 0.1562 

Station observed TWmax 

Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN 

Shape ξ -0.1769 -0.1860 -0.2150 -0.2157 -0.2164 -0.3231 -0.2423 -0.2190 -0.1867 

Standard Error Δξ 0.0383 0.0354 0.0347 0.0442 0.0266 0.0269 0.0347 0.0368 0.0322 

Scale σ 2.7590 2.0454 1.9600 2.0780 1.8572 2.3724 2.5126 2.3375 1.9032 

Standard Error Δσ 0.1596 0.1146 0.1084 0.1289 0.0938 0.1191 0.1380 0.1328 0.1055 

ERA Interim TWmax 

Estimates JCB MJD RHI PDN NWB HYD CHR KHI    BDN 

Shape ξ -0.0896 -0.0946 -0.0687 -0.1257 -0.1583 -0.1771 -0.0902 -0.0194 -0.1733 

Standard Error Δξ 0.0379 0.0293 0.0327 0.0342 0.0313 0.0377 0.0357 0.0359 0.0378 

Scale σ 1.2879 1.2437 1.2311 1.4408 1.6104 1.6499 1.3423 0.6801 1.7886 

Standard Error Δσ 0.0748 0.0660 0.0676 0.0804 0.0875 0.0959 0.0760 0.0398 0.1028 

Bias Corrected ERA Interim TWmax 
Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN 

Shape ξ -0.08961 -0.0946 -0.06870 -0.12570 -0.15831 -0.17711 -0.09017 -0.01942 -0.17332 

Standard Error Δξ 0.03786 0.02931 0.03275 0.03424 0.03134 0.03767 0.03571 0.03593 0.03782 

Scale σ 1.35674 1.64650 1.75852 1.49477 1.52013 2.05281 2.14609 1.39943 2.15299 

Standard Error Δσ 0.07878 0.08736 0.09651 0.08347 0.08254 0.11924 0.12145 0.08193 0.12370 

  
 
 

 
  

 
 

 
 

 
 

 
  

 4	
 5	
 6	
 7	
 8	
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Figure	2.	Modified	scale	(σ*)	and	shape	parameter	(ξ)	of	the	observed	Tmax	Karachi.	The	red		
																		vertical	lines	represent	the	selected		threshold	according	to	the	station	quantiles.	

Figure	3.	Mean	residual	life	plot	of	the	station	observed	Tmax	Karachi.	
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Figure	4.	Spatial	distribution	of	the	shape	parameters	ξ		and	scale	parameters	σ	of	the	station	observed,		
																			ERA	Interim,	and	bias	corrected	ERA	Interim	Tmax		(upper	panel)	and	TWmax	(lower	panel).	
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Figure	5.	Absolute	maxima	Amax	(a)	station	observed	Tmax	(b)	ERA	Interim	and	bias	corrected	ERA	Interim	Tmax		
																	(c)	station	observed	TWmax		(d)	ERA	Interim	and	bias	corrected	ERA	Interim	TWmax	
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Figure	6.	Return	level	plots	of	the	station	observed	Tmax	(black)	,	ERA	Interim	Tmax	(red),	and	bias	
corrected	ERA	Interim	Tmax	(green)	in	degree	Celsius.	The	blue	line	is	to	show	a	difference	in	the	
observed	and	ERA	Interim	RLs.	
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Figure	7.	Return	level	plots	of	the	station	observed	TWmax	(blue),	ERA	Interim	Tmax	(pink),	and	bias	
corrected	ERA	Interim	Tmax	(green)	in	degree	Celsius.	The	black	line	is	to	show	a	difference	in	the	
observed	and	ERA	Interim	RLs.	
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Figure	8.	 	 Spatial	distribution	of	 the	 station	observed	Tmax	 (red)	 and	bias	 corrected	ERA	 Interim	
Tmax	(blue)	 return	 levels	 corresponding	 to	 return	 periods	 of	 5,	 10,	 25	 and	 50	 years	 in	
southern	Pakistan.	
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Figure	9.	 Spatial	distribution	of	 the	 station	observed	TWmax	 (brown)	and	bias	corrected	ERA	Interim	
TWmax	(orange)	 return	 levels	 corresponding	 to	 return	 periods	 of	 5,	 10,	 25	 and	 50	 years	 in	
southern	Pakistan.	
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